Table of Contents

11.
Overview

11.1.
Introduction

31.2.
Swarm Intelligence

31.2.1.
Motivation

51.3.
Objectives

51.4.
Applications

51.5.
Organization of Dissertation Work

62.
Background of Particle Swarm Optimization

62.1.
Swarm Intelligence

62.2.
Optimization

72.2.1.
Local Optimization

72.2.2.
Global Optimization

72.3.
OPTIMIZATION PROBLEM

82.4.
EVOLUTIONARY COMPUTATION AND PSO DEVELOPMENT

92.5.
Swarm intelligence and its biological basics

112.6.
Decentralized Decision Making

122.7.
Forage:

122.8.
SWARM INTELLIGENCE IN OPTIMIZATION TECHNIQUE

122.8.1.
Introduction

133.
Research Methodology

133.1.
Literature Review

143.2.
Particle Swarm Optimization: Some Variations

143.2.1.
The Velocity Variation

143.2.2.
The Control Parameter Variation

163.2.3.
Inertia Weight

173.3.
Benchmark Set

203.3.1.
Mathematical Progressions

234.
Implementation

234.1.
PSO Algorithm revisited

244.2.
Selection of Inertia weight

254.3.
Object Oriented Programming

254.4.
Input and Output

264.5.
Data Structures

275.
Output

275.1.
IN TRID FUNCTION

325.2.
Sum Square Function

375.3.
Schwefel Function

446.
Results and Assumptions

LIST of Abbrevations

PSO- Particle Swarm Optimization.

D –dimensions

ACO-Ant Colony Optimization
AP --Arithmetic Progression

GP – Geometric Progression
GA –Genrtic Algorithm
HP – Harmonic Progression

SI – Swarm Intelligence

TSP – Travelling Salesman Problem.

Gbest – Global Best
Lbest – Local Best
GBEST -- Globally optimized solution
LBEST -- Locally optimized solution

W – Inertia Weight

List of Tables
27Table 5.1: Results obtained using 5 Particles in 10 and 100 iteration on 3D

28Table 5.2: Results obtained using 5 Particles in 1000 and 2000 iteration on 3D

29Table 5.3: Results obtained using 5 Particles in 10 and 100 iteration on 6D

29Table 5.4: Results obtained using 5 Particles in 1000 and 2000 iteration on 6D

30Table 5.5: Results obtained using 10 Particles in 10 and 100 iteration on 3D

30Table 5.6: Results obtained using 10 Particles in 1000 and 2000 iteration on 3D

31Table 5. 7: Results obtained using 10 Particles in 10 and 100 iteration on 6D

32Table 5.8: Results obtained using 10 Particles in 1000 and 2000 iteration on 6D

32Table 5.9: Results obtained using 5 Particles in 10 and 100 iteration on 3D

34Table 5.10: Results obtained using 5 Particles in 1000 and 2000 iteration on 3D

34Table 5.11: Results obtained using 5 Particles in 10 and 100 iteration on 6D

35Table 5.12: Results obtained using 5 Particles in 1000 and 2000 iteration on 6D

35Table 5.13: Results obtained using 10 Particles in 10 and 100 iteration on 3D

36Table 5.14: Results obtained using 10 Particles in 1000 and 2000 iteration on 3D

36Table 5.15: Results obtained using 10 Particles in 10 and 100 iteration on 6D

37Table 5.16: Results obtained using 10 Particles in 1000 and 2000 iteration on 6D

37Table 5.17: Results obtained using 5 Particles in 10 and 100 iteration on 3D

38Table 5.18: Results obtained using 5 Particles in 1000 and 2000 iteration on 3D

38Table 5.19: Results obtained using 5 Particles in 10 and 100 iteration on 6D

39Table 5.20: Results obtained using 5 Particles in 1000 and 2000 iteration on 3D

39Table 5.21: Results obtained using 10 Particles in 10 and 100 iteration on 3D

41Table 5.22: Results obtained using 10 Particles in 1000 and 2000 iteration on 3D

41Table 5. 23: Results obtained using 10 Particles in 10 and 100 iteration on 6D

42Table 5.24: Results obtained using 10 Particles in 1000 and 2000 iteration on 6D

List of Figure
Figure 3.1: Trid Function -17

Figure 3.2: Sum Square Function -18

Figure 3.3: Schwefel Function -19
Figure 6.1 : Trid Function implemented with 5particles on 3dimension -45
Figure 6.2: Trid Function implemented with 10 particles on 3dimension -46
 Figure 6.3 : Trid Function implemented with 5 particles on 6 dimensions -47
Figure 6.4 : Trid Function implemented with 10 particles on 6 dimensions -48
Figure 6.5: Sum Square Function implemented with 5 particles on 3dimensions -49
 Figure 6.6 : Sum Square Function implemented with 10 particles on 3dimensions -50
Figure 6.7: Sum Square Function implemented with 5 particles on 6 dimensions -51
Figure 6.8 : Sum Square Function implemented with 10 particles on 6 dimensions -51
Figure 6.9 : Schwefel Function implemented with 5 particles on 3dimensions 52
Figure 6.10 : Schwefel Function implemented with 10 particles on 3dimensions -53
Figure 6.11 : Schwefel Function implemented with 5 particles on 6 dimensions -54
Figure 6.12 : Schwefel Function implemented with 10 particles on 6 dimensions -55
ACKNOWLEDGEMENT
It is a great pleasure for me to acknowledge the contributions of a large number of individuals to this work. I deeply extend my heartily acknowledgement to my respected teacher and dissertation supervisor Prof. Dr. Shashidhar Ram Joshi, Institute of Engineering(IOE), Pulchowk,for giving me an opportunity to work under his supervision and for providing me guidance and support throughout this work.

I owe special debt of gratitude and deeply grateful to Associate Professor Nava Raj Paudel (Central Department of Computer Science and Information Technology), Mr. Ananda K.C (Central Department of Computer Science and Information Technology), Mr. Dadhi Ram Ghimire(Central Department of Computer Science and Information Technology) Mrs. Diksha Khadka (Central Department of Computer Science and Information Technology), Mr. Sandeep Aryal (Central Department of Computer Science and Information Technology) and Mr. Dhruba Mitra Neupane for their kind support during the study. They provided me ample time for discussion on issue related to the study and valuable suggestion in implementation portion of my dissertation.
I would like to express my gratitude to the respected teachers Prof. Dr. Subarna Shakya, Prof. Sudarshan Karanjeet, Mr. Jagdish Bhatt, Mr. Sarbin Sayami, Mr. Arjun Singh Saud, Mr. Bikash Balami, Mr. Abinash Ghising, Mrs. Lalita Sthapit, Mr.Yog Raj Joshi, and others staffs of CDSCIT for granting me broad knowledge and inspirations within the time period of Central Department of Computer Science and Information Technology.

This dissertation would not have been possible without the advice and support of my friends. Therefore, I would like to express my special thanks to, Mr. Ananda KC, Mr. Dadhi Ram Ghimire, Mrs. Diksha Khadka, SulavAryal and Mr. SandipAryal. Last but not list, I would like to thank my family members for their constant support and encouragement.

ABSTRACT

In this dissertation work, present a comparative study of different benchmark equation on Particle Swarm Optimization (PSO) on varying inertia weight. Optimization is a mathematical technique that concerns the finding of maxima or minima of functions in some feasible search space. Particle Swarm Optimization is a relatively new, modern, and powerful method of optimization that has been empirically shown to perform well on many of these optimization problems. It is widely used to find the global optimum solution in a search space. Different parameters are found in Particle Swarm Optimization. Included are brief Discussion of, test comparative analysis of different benchmark test function varying Inertia factor in algorithm, study with the mathematical sequence Arithmetic, Harmonic and Geometric sequence. Moreover this work study the resulting effect of the variations of inertia weight and shows the efficient benchmark equation on selection of mathematical progression when varying the self and social cognitive behavior of swarms in varying parameter weight. And actually propose a better value for w in the study.
CHAPTER 1

1. Overview

Introduction

The Particle Swarm Optimization (PSO) algorithm is a very popular population-based stochastic search algorithm. The PSO algorithm was originally developed by Dr. Kennedy and Dr. Eberhart in 1995 and idea was originally inspired by the social behavior of animals in general bird flocking, fish schooling and swarming theory in particular. It is based on the natural process of group communication to share individual knowledge when a group of birds, fishes or insects (bee) search food or migrate in a searching space although they do not know where the best position is. In PSO, each member of the population is called a particle and the population is called a swarm 1[]
. If any particle can find out an appropriate path to go, the rest of the particles will follow quickly.

The PSO algorithm is learned from animal’s activity or behavior to solve optimization problems. Starting with a randomly initialized population and moving in randomly chosen directions, each particle goes through the searching space. Particle Swarm has mainly two operators: Velocity update and Position update. During each change of movement each particle is accelerated toward the particles previous best position and the global best position. At each iteration a new velocity value for each particle is calculated based on its current velocity, the distance from its previous best position, and the distance from the global best position. The new velocity value is then used to calculate the next position of the particle in the search space. This process is then iterated a set several number of times, or until a minimum error is achieved .
Particles of a swarm communicate good positions to each other as well as dynamically adjust their own position and velocity derived from the best position of all particles. The next step begins when all particles have been moved. These particles move according to fitness criteria to find a best solution in search space. The movement of each particle of the swarm is based upon number of factors, these are: Inertia of the particle, the best position the particle has attained so far and the best position attained by the whole particle also known as swarm. These factors play an important role in the movement of each particle in the search space Inertia represents continuation of motion towards the previous direction. Another main factor: the personal best factor influences each movement of the particle with self-cognition while the global best factor influences the movement of particles with social-cognition.

But in the development phase of PSO has been researched with many changes and modifications. There are number of types of modifications in PSO algorithm: search space extension, parametric adjustment and hybridization with other techniques2[]
.

Among them parametric adjustments factors play main role in the PSO algorithm. They are Inertia weight w, self-cognitive and social coefficients, velocity of particles, random numbers, personal best and global best modifications3[]
. The very basic pseudo code of basic PSO algorithm is as follow.

V4[]
 = v4[]
 + c1 * rand() * (pbest4[]
- present5[]
) + c2 * rand() * (gbest[] - present[]) [Equation 1.1]

present[] = persent[] + v[] [Equation 1.2]

here,

v[] is the particle velocity,

persent[] is the current particle (solution).

pbest[] and gbest[] are defined as personal best and global best respectively.

rand () is a random number between (0,1).

c1, c2 are cognitive coefficient factors. here c1 = c2 = 1.494.
The pseudo code of the Particle Swarm Optimization is as follows
For each particle
Initialize particle
END
Do
For each particle

Calculate fitness value
If the fitness value is better than the best fitness value, personal best (pBest) in history
set current value as the new pBest
End
Choose the particle with the best fitness value of all the particles as the global best (gBest)
For each particle
Calculate particle velocity according equation (1.1)
Update particle position according equation (1.2)
End

All particles tend to move towards better and better positions over the searching process until the swarm moves close to an optimum of the fitness function. The PSO method is becoming very much popular because of its simplicity of implementation on different platform as well as ability to swiftly converge to a good solution. It does not require any gradient information of the function to be optimized and uses only primitive mathematical operators and functions. As compared to other optimization methods, it is faster, cheaper and more efficient. In addition, there are few parameters to adjust in PSO. That’s why PSO is an ideal optimization problem solver in optimization problems. PSO is well suited to solve the non-linear, non-convex, continuous, discrete, integer variable type problems.
Swarm Intelligence
Swarm intelligence (SI) is the collective behavior of bird flocking, schooling of fish and bee swarming and so on in nature, which is decentralized, self-organized systems. The concept is employed in work on artificial intelligence. Gerardo Beni and Jing Wang introduced swarm Intelligence (SI) in 1989. SI systems consist typically of a population of simple agents interacting locally with one another and with their search environment. Examples in natural systems of SI include ant colonies, bird flocking, animal herding, bacterial growth, and fish schooling. The most popular swarm intelligence techniques are Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO)6[]
. In PSO each particles or agents move through multidimensional search space and adjust their position in every iteration step with its own best experience and entire swarm particle. Therefore Particle swarm Optimization (PSO) is the part of Swarm intelligence.
Motivation

PSO algorithm was firstly introduces in 1995. It is a quite new algorithm, there have been plenty of researches on the PSO algorithm, and it has been used as a robust technique for solving optimization problems in variety of optimization applications7[]
. PSO algorithm doesn’t always works good results but the results still have chance of improvements on it. Therefore more research on this field is doing. It is clearly seen that no of daily life problem is solved effectively. Simply the main work is change the parameter modification of algorithm. This dissertation, takes the conceptual overview of parametric adjustment effectiveness with varying inertia factor w on different test equations.

The PSO algorithm is stated in the form of equation as follows:

vi+1 = w×vi+c1r1(pi-xi)+c2r2(pg-xi)
 (Equation 1.2.1)

xi+1=xi+vi+1
(Equation 1.2.2)

where,
vi is the current velocity of the particle in a dimensional search space.

xi is the current position of the particle i.

w is the Inertia weight of particle

c1 and c2 are positive acceleration constants which are used to level the contribution of the cognitive and social components respectively

pi is the personal best position of a particle i.

pg is the global best position of the swarm.

r1 and r2 are random numbers from uniform distribution (0,1) at time t.

The succeeding velocity and position are subscripted i+1.

The above mention algorithmic equations 1.2.1 and 1.2.2, has number of parameters. Where, c1 represents the coefficient of self-cognition it’s also known as cognitive coefficient i.e. positive constant as well. This coefficient affects the equation with the factor that contains the previous best position achieved by any particle in the search space. Another coefficient, c2, represents the factor that affects the particle towards the globally best position from the herd or swarm. The Inertia weight parameter w is the parameter that influences the movement of any particle by the factor of their previous velocity vector. The changes in the PSO parameter thus point to Exploration and Exploitation. Exploration ― the covering of a large area in the given search space and exploitation ― the fine tuning of the region of optimal solution 4[]
.
In general, PSO implementations use almost fixed value for inertia parameter but there is lack of fixed value for the parameter. Thus, its comparative analysis can be done. For this dissertation, this factor will be varied based on Arithmetic, Geometric and Harmonic progression. To test this, use of Trid function, Sum Square Function and Schwefel Function are used as benchmarks in shall be used8[]
.

Values for the parameter w, c1 and c2 have been tried and tested for different values. The standard implementation used values w=0.729, c1=1.494 and c2=1.494 for their work4[]
. These values came and using the trial and error approach and which could vary as the problems and scenario of the problems.

Objectives

The general objective of the study is to “find the comparative analysis of Particle Swarm Optimization benchmark Test Suite Functions”

· To test comparative analysis of different benchmark test function varying Inertia Weight.

· To study the self and social Cognitive behavior of swarms in varying parameter W.

· To propose a better value for W in the comparative Study.
Applications
The practical application of PSO was in the field of neural network training and was reported together with the algorithm itself by Kennedy and Eberhart 1995. Other many more areas of application have been explored ever since, including telecommunications, control, data mining, design, combinatorial optimization, power systems, signal processing, human tremor analysis, computer numerically controlled milling optimization, ingredient mix optimization, reactive power and voltage control, battery pack state-of-charge estimation and others. To date, there are hundreds of applications of particle swarm optimization algorithms9[]
 .
Organization of Dissertation Work

For this dissertation work Chapter two gives brief information on existing studies in the Particle swarm Optimization and its backgrounds. In chapter three literature related reviews, Research methodology, different Mathematical equations, benchmark equations sets and Particle swarm Variations, on next chapter implementation of this work with the help of Particle swarm optimization, On chapter 5 result data as tabular form, Chapter 6 Analysis of implemented data with graphical representation and on the last chapter works conclude and summarizing its achievement results and further recommendation on this work. Appendix is presented source code of PHP programming language which is implemented.
CHAPTER 2
2. Background of Particle Swarm Optimization

Swarm Intelligence

Swarm intelligence (SI) represents the population-based collective behavior of decentralized, self-organized systems. A modern artificial intelligence discipline is concerned with the design of multi particles systems that is population-based behavior, each particles that interact locally with one another and with their surrounding neighbor particles. The main motivation of swarm intelligence comes from biological behavior systems such as termites, bees and ants etc. The particles follow very simple rules, and there is no any mechanism for centralized control structure. Natural examples of SI include ant colonies, bird flocking, animal herding, bacterial growth, fish schooling and human behaviors10[]
.
Such a collective or swarm behavior gives great results instead of individual flow. These kind of study have mathematical and physical statements to represent mathematical models based on such behaviors. Many of these events can be seen in the insect world. Ants, termites and wasps build very complex nests together. They are not guided by a single master mind or a master plan as to how to go ahead, actually it’s learning from neighbor. Ant solve complex trial by simple ways with help of pheromone, the best path to get food source from nest10[]
. Another such amazing event is the searching of food in bees.

Natural collective behavior is the main research field through swarm intelligence. Two promising areas where swarm intelligence has been in use are optimization and swarm robotics. These fields make use of information exchange in collective behavior of entities. These have been found quite successful. Some other areas where swarm intelligence has been noticeable are routing and load balancing in telecommunication networks6[]
.
Optimization

Optimization is best suited solution to a problem under the given search space or environment. Optimization is the most cost effective and best substitute among the substitutes. The selection process may go through certain criteria – the criteria set is termed “constraints” in the optimization technique – that may be required to be fulfilled. If the selected alternative fulfills all the criteria defined over the problem, then the alternative is a plausible solution. Plausible solutions are not always unique. In fact, for any optimization process there are usually many of them. Among the possible solutions, picking up the best alternative is optimization. The process consists of either maximizing or minimizing a real function – function of a mathematical model or a function defining a physical model – by choosing input values from within an allowed set or the domain of the function. In a general sense an optimization process consists of picking the best solution from an allowed domain of possible values, possibly constituting a function, and following some constraints that should be met. A large area of applied mathematics revolves around the generalization of optimization process9[]
.

Local Optimization

A feasible solution is a local optimum if there are no other feasible solutions with a better function value in the immediate neighborhood. A local optimum may be either maximum or local minimum. 9[]

A global minimizer is defined as such x* that
 [image: image2.png]f(x*) < f(x*),Vx € S,where S is search Search space.

Global Optimization

A feasible solution is a global optimal optimum if there are no other feasible points with better objective value in the entire feasible region. A global optimum may be either a global maximum or a global minimum.9[]

OPTIMIZATION PROBLEM
In computer science and Mathematics, an optimization problem is the problem of finding the best solution from all feasible solutions to a given problem. However, the best solution or the global optimal solution is not the preferred one for a problem. It depends upon nature of problem and tradeoff between finding global optimal, less optimal or sub optimal. Sometime suboptimal is preferred for optimal which is known as local optimal solutions. If the globally require optimal solution it’s called global optimal solution11[]
. Optimization problem can categories in two types depending on weather variables and continuous or discrete .The problem with discrete variables is known as a combitionatorial Optimization problem, which contents integer, permutation or graphs from a finite sets. Optimization is best minimum or maximum function value. Optimization problems may be linear (called linear optimization problems) or non- linear (called non-linear optimization problems). Non-linear optimization problems are generally very difficult to solve.

Based on the optimization problem characteristics, optimization problems are mainly classified as constraints, unconstrained, dynamic Optimization9[]
.
EVOLUTIONARY COMPUTATION AND PSO DEVELOPMENT
The main objective of optimization is to find out the best-suited solution to a problem under a given search space. Numbers of research work are done on resent year have come up with different solutions to linear and non-linear optimization problems. In case of math an optimization problem involves a fitness function describing the problem, under a set of constraints representing the solution space for the problem. Most of the traditional optimization techniques are center around evaluating the first derivatives to locate the optima on a given constrained surface. Because of the difficulties in evaluating the first derivatives, to locate the optima for many rough and discontinuous optimization surfaces, in recent times, several derivative free optimization algorithms have emerged. On this days the optimization problem, is represented as an intelligent search problem, where one or more agents are employed to determine the optima on a search landscape, representing the constrained surface for the optimization problem12[]
.
Evolutionary Programming is one of the major among evolutionary algorithm paradigm it is quite similar to genetic programming but the structure of program to be optimized is fixed, it was invented on 1960.The travelling sales man ,scheduling ,neural networks are some optimization issues are addressed by it .
Genetic algorithm have quite popular in a generation by generation on evolution .It is heuristics for algorithm, concern with interaction of genes on a chromosome rathen the assuming alleles act independently. Some typical on which the GA has been used are control of pipelines, jet engine, machine learning 4[]
.

Swarm intelligence and its biological basics

The roots of swarm intelligence are entirely embedded within the biological study of self-organized behaviors in social insects. The Swarm intelligence was born from biological insights about incredible ability of social insects to solve their daily life problems..
One may be surprised because of the discussion on biology here. One could even question on the discussion. So, why is biology here? It is because, biological phenomena has countless examples where successful existence of beings are found. Persistence of living beings due to this biological phenomena does provide inquisitive paths for the curious and biology is here just to encourage and inspire computer scientists and researchers10[, 13]
.

Inspirations can be drawn because; the regularity of biological entities from the very beginning of time in surviving the different changes is something great. Mathematical models can be built upon them. In fact, many such models exist and many phenomena can be explained using mathematics.
The behavioral aspects found in biology can be promising area where mathematical models can be built upon. Many instances can be found where the inquisitions in nature can be addressed only when mathematical models are built upon them. One such instance is the shape of the cells in a bee hive. Each cell in the bee hive is shaped hexagonal; why do the bees build them in that shape? Is it because the shape can accommodate more honey? Well, this could have been an answer were it not for R.A.F de Reaumur who realized that the amount of wax needed made it so. Also, it is the consequence of the shape of each cell that the given area is divisible into equal cells. It is surprising but are the bees blindly using the highest level of mathematics10[]
.
The answer to it may or may not lie within the deepest secrets of biology. However, some discussions on the event can be found in the words of Charles Darwin. Darwin is renowned for his theories. His “Origin of Species”, “Survival of the fittest” and the “Natural selection” theories have proven to be an asset in studying living science. And, for the shape of cells in the bee hive he stated that the ancestors of bees experimented with the shapes. After some experimentation the hexagonal shape gave the better result, and hence, it persisted. According to Darwin, the process of natural selection consequently led to the hexagonal shape. The shape finally persisted only after going through many, successive, slight changes of simpler instincts.

On the contrary, however, in his book “On Growth and Form”, D' Arch Wentworth Thompson dismissed the idea that natural selection alone shaped those cells. He highlighted that simple physical or mathematical rules accounted for the hexagonal shape 14[]
.

Thompson, being a biologist and a mathematician himself remarked that the patterns simply formed due to physical forces and no natural selection applied in it. It was indeed proven to be true from the studies of formation of shapes of waxes when exposed to such environment. They shaped hexagonal.Thus, even in such complex phenomenon, no such thing as a divine entity exists. Having dismissed the idea that all the biological happenings have diving entity behind them, scientists today are finding new things from biology. The idea also puts a foundation on which one can say that the underlying principles that govern different biological happenings can be common to the physical happenings. Physical happenings can be studied with mathematics; mathematical models can be built out of biological phenomenon13[]
.

The physical study of the honeybee comb, for instance, is quite interesting on this aspect. The honeybee's comb is great for its hexagonal shaped cells; it is greater for the arrangement of brood (eggs; future larvae), pollen and nectar (future honey). Their arrangement in the comb is of a characteristic pattern.

The pattern of the comb consists of three clearly unique concentric regions: a central brood area, a surrounding rim of pollen and a large peripheral region of honey. This pattern is even more pronounced in the central area of the comb where a large portion of brood volume intersects. Yet another question arises, how would the humble bees know such a structure? Is it spontaneous? Do they have plans?

The egg-laying behavior of the queen along with the movement of foragers (food searching workers) and the behavior of the nurse workers, those that feed the brood was monitored by Camazine15[]
. In his study, he found that the queen laid her eggs within the central area. She laid her eggs in the cells closer to a cell containing another brood and never went more than few cell lengths of the brood-containing cell.16[]

The workers on the other hand, were quite random at their selection of cell into which to deposit the pollen; had no preference in selecting the site. However, when removing the pollen and honey, the closest to the brood were removed with preference. This preferential removal of pollen and nectar from cells closest to cells containing brood contributed to the characteristic pattern in the honey comb. This pattern was also attributed to the queen's preference of laying eggs.

To understand such a complex process, Camazine, with the help of a simulation model modeled his observations. By constructing a simulation model based on his behavioral observations, he was able to closely follow the emergence of the pattern.

Random structure of honey and pollens is developed when the workers do not have any preference in depositing the pollens. The characteristic structure is defined because of the movement of honey towards the brood area and the preference of the queen in laying eggs. Camazine could find this fact only using computer simulation.

With no tools like simulations or mathematics, it is impossible to translate individual behavior into collective behavior. These tools, available outside the biological studies, describe the collective nature of emergence of characters. Each individual corresponds and represents an entity in the tools and a being in the biology respectively.

Prior to this, it would be impossible to translate individual behavior into collective behavior since tools such as simulations or mathematics were not used. However, tools available today ― tools that are outside biology ― have been effective in dealing on behavioral traits with the view that individual interactions bring about collective behavior.

In saying so however, the generalization in this context is far more complex in case of biology where natural selection acting upon them cannot be ignored. Natural selection and divine entities cannot be ignored altogether. Natural phenomena are of stochastic behavior.

On the contrary, if a mathematical model for some system captures the behaveior of some others, we can always produce an analogy and talk about their similarities. Such similarities could be generalized. They may lead to some collective study.
Decentralized Decision Making

In the natural phenomena such as bees searching for food or for a new home; decision is not taken solely. In fact, a member only recommends his or her status if it is better than others. If it is not, then he or she moves towards a better-positioned member. Bees, wasps and some other animal colonies have members who transfer information in between. Their solitary existence is not counted in the group making their sole decision less influential. Insect colonies need to make collective decisions, for example where to forage, which nest to move to, when to reproduce and how to do the division of labor. It is also known that group-level decisions are the results of the individual insects acting mainly on local information obtained from interactions with their peers and their immediate environment15[]
 .When agents are immerged in social contexts then its decisions are influenced by other observation’s decisions .This process make it possible for an agent or particle to access other information. Social influences is thus knowledge is transmitted using their own communications media. Decentralized decision-making occurs when a group level decision is made in spite of the facts that individual decisions are based on local information.
Forage:

In order to organize foraging, social insect need a form of recruitment, it is a collective term for any behavior that result in an increase in the number of individuals at a particular place and allows insect societies to forage efficiently in an environment in which food source are widely distributed15[]
.

SWARM INTELLIGENCE IN OPTIMIZATION TECHNIQUE

Introduction

The core concept of swarm intelligence is collective behavior shown by insects like bees, ants, wasps and termites and other social animals such as schools of fish or flocks of birds, which is concern with the design of the multi-agent system by taking inspiration of collective behavior of socials animal and different insects. It is based on Artificial Intelligence (AI) based.

Colonies behavior is quite popular research field from many years ago. The working mechanism of swarm has been mystery for many years ago from today. The swarm produce collective behavior form sophisticated through each local and individual may not seems to capable, But complex work done in remarkable way with full of co operation .Very simple task and communication among each individual brings a collective behaviors. All the achieve swarm get from the inter communication and message sharing6[]
.
CHAPTER 3

3. Research Methodology

PSO optimization is one of the mainstay research field of the computer science and various research works has been done in this field. The main task in the dissertation work is of stochastic nature. Some of the previous works in this field are discussed in the next sections of this chapter. (previous works and analysis).Due to the stochastic way of the proposed Algorithm, all the displayed results are midpoints subsequently. This is attained to by expecting that great arrangements are near to one another in the search space. The discoveries and comparative analysis however have been shows to effectively intelligible arrangements, for example, tables, pie diagram and diagrams.

Literature Review

Particle Swarm Optimization (PSO) was first introduced by Dr. Russell C. Eberhart and Dr. James Kennedy 2 in 1995, proposed the theory for optimization that was based on bird flocking and fish schools. The theory was a new method for optimizing and was called the Particle Swarm Optimization.

In this dissertation work, Particle Swarm optimization methodology has been used for optimization of nonlinear functions. Applications including neural network training and robot task learning have been proposed. The paper also provides the benchmark [image: image4.png]equation

s testing of both paradigms [3].
In this paper provides a concept on particle swarm optimization. In order to help give the idea, the concept has been implemented using two paradigms: globally optimized solution (GBEST), and locally optimized solution (LBEST). This has been followed by the results obtained from applications and tests upon which both the methodologies have been shown to work successfully2[]
.

Since PSO development, its algorithm has been applied by many scientists and researches with great reception towards its ability. No of research works are done on this topic due to simplicity in the algorithm. Many new problems have been found to be easily solvable using PSO algorithm and in some of the cases PSO has been proven to work better result. Papers and reading materials such as journal articles, research papers and implementations mainly come from the Internet open sources and from books on the implementations

Particle Swarm Optimization: Some Variations

From the beginning of PSO algorithm evolution and development, it has been tried and tested by number of researcher and many times. The initial version of PSO have no of factors like no of particle, velocity of the particle, velocity variation, Inertia weight, local best (lbest) and global best (gbest) and two acceleration coefficient self cognitive coefficient and social cognitive coefficient .In the PSO has many parameters to solve problem through consist of the variations in its implementations. PSO parameters are the chief ones that have been varied. Some of the variations and the effects of the variations are given below.

The Velocity Variation

In PSO, velocity v parameter has been varied with many results outcomes. While the detailed variation analysis on velocity variation is exciting works, the details go beyond the scope of this work. However, the chief possibility on the variation of v and its impact on the overall algorithm cannot be surpassed without discussion. To summarize the effect of v varying, the parameter v always has a maximum limit to it. Letting v unlimited can make the particles to leave the search space. So, the v limited to maximum value Vmax, has the beneficial effect of preventing the explosion (going beyond the search space) of the swarm. It scales the exploration of the particle’s swarm. However, the value for Vmax requires the understanding of the problem. For some problems Vmax could have larger values and when provided with less the particles may get stuck in local optimum12[]
. For others it may require Vmax to be small, giving it a larger value could disturb the fine tuning of the solution.

The Control Parameter Variation

The control parameter on given space, φ, combined form of φ1 and φ2 for this discussion, can also have many daviation when varied. It is a parameter that takes on random values in the algorithm. The randomness in the movement of particles is provided by this parameter. Varying this parameter thus produces oscillatory movements of particles. Once again, it will be beyond the scope of this work to discuss thoroughly on the variation and the effects of this parameter. However, most prominent effect and variation cannot be left without being discussed. The value of φ is preferred by many to be between 0 and 4. This has been preferred on the basis of different tested implementations of different researchers. However, when varied beyond the upper limit, φ produces the effect of the swarm explosion1[]
.
Inertia Weight w
Inertia weight w is one of the next major variations factor of the standard PSO algorithm. This factor influences the Inertia of each particle and thus has the ability of altering the flow of whole swarm. The Inertia weight factor modifies the standard PSO in a subtle way[1]. The standard equation has now w added to it and is written as:

vi ←w × vi + φ1 × (pi − xi) + φ2 × (pg − xi)
(Equation 3.2.1)

xi ← xi + vi
(Equation 3.2.2)

Since this dissertation work is primarily concerned with the study of the variation of this major factors, much of the discussions that follow will be focused on this variation.

As already discuss above, the Particle Swarm Optimization approach to solving optimization involves many parameters ― parameters that can be easily varied and studied. That is to say that the algorithm consists of parameters each of which has their own significance. The parameters when modified have some diverse effects. The diversity of effects on the modification of the PSO parameters has been in research for considerable period. There have been many interesting results and much more interesting interpretations.

Among the variations of parameters in PSO, the variation of w, or the Inertia weight, has the effect that a particle movements and in the direction where it was previously moves. Inertia is the resistance factor of the particle such that the particle does not change its previously headed direction. An analogy can be made with the inertia as found in the laws of motion. With so much discussion on w, the PSO equation can be written in the form:

vi+1 = w×vi+c1r1(pi-xi)+c2r2(pg-xi)
(Equation 3.3.3)

Equation 3.3.3 shows that the velocity v, a vector quantity, has in its composition the w parameter. The variation of w directly influences the previous velocity composition in the equation, thus affecting the movement of each particle in each dimension. The parameter w has a significant effect when it comes to the exploration and exploitation of the search space. Exploration of the swarm space means the searching for solution in broad area while exploitation means the fine tuning of a region in order to achieve precision8[]
.
Benchmark Set

Particle Swarm Optimization Algorithm is an algorithm that gives useful functional evaluations at feasible points to a given issue. In spite of the fact that it has been useful for many more, it is simpler to analysis and study its execution with the assistance of some benchmark comparisons equations. There are numerous such benchmark comparisons equations accessible. Among them three of the referred to issues have been taken as benchmark mathematical statements for this work. The many-sided quality and the adequacy in utilizing the mathematical statements to test the implemented PSO will be examined later on. Then again, the nature and properties of the test benchmark equation utilized as a part of the work need to be examined here.
Many equations such as Sphere, Trid function, Sum Square Function, Schwefel Function, Griewank, etc., can be found in standard benchmark suites such as the De Jong's test suites17[]
. The proposed work however intends to limit itself to only three of the standard benchmark functions: Trid function, Sum Square Function, Schwefel Function equations5[]
.

	Functions
	Objective function f(x)
	Search Space

	Trid Function
	f(x)=[image: image6.png]x— 1) - X, xx—1

	[image: image8.png]x; € [—d?, d?]

, for all i=1…d

global minimum f(x)= -50 at d=6
global minimum f(x)= -200 at d=10

	Sum Square Function
	[image: image9.png]() = z ix;?

	[image: image11.png]x; € [-5.12,5.12]

, for all i=1…d

global minimum f(x)=0

	Schwefel Function
	[image: image12.png]&
f(x) = 418.9829d — Zx, sin (/Ix])
=

	[image: image14.png]x; € [-500,500]

, for all i=1…d

global minimum f(x)=0

Table 3.1 Benchmarks Equations

[image: image15.png]f1a2)

Tid Function

Figure 3.1: Trid Function
The Trid function has no local minimum except the global one. It is shown here in its two-dimensional form.

[image: image16.png]a2

Sun Squares Function

Figure 3.2: Sum Squares Function
The Sum Squares function has no local minima except then global one.

[image: image17.png]f1a2)

2

Sehwefel Furgtion

500500

t

Figure 3.3: Schwefel Function
The Schwefel function is complex then above two objective function, with many local minima. The plot shows the two-dimensional form of the function.
Mathematical Progressions

Mathematical progressions are sequences of numbers that are generated following some inherent rules. Three most basic mathematical progressions are arithmetic, geometric and harmonic progressions. These progressions are defined here since they also form an important part in this work. Variation of the w factor is done using these progressions and comprises a major part of this thesis.

Arithmetic Progression

An arithmetic progression (AP) is a progression of numbers where the difference between each consecutive term is constant. 2, 6, 10, 14 … is in AP because each consecutive term of the progression differs by a constant factor of 4. Similarly, -9, -12, -15 … is also in AP since the terms differ by constant factor of -3 9[, 18]
.

Given an initial term a, the common difference factor d, the nth term of the arithmetic sequence is given by

[image: image18.wmf](

)

d

n

a

a

n

1

1

-

+

=

And, in general

[image: image19.wmf](

)

d

m

n

a

a

m

n

-

+

=

The sum of a finite arithmetic progression — the one with finite number of terms — is called an arithmetic series.

The nature of arithmetic progression depends on the common difference d. If the common difference is:

Positive — terms will grow positively towards infinitely.

Negative — terms will grow negatively towards infinitely.

Geometric progression

A geometric progression (GP), also known as a geometric sequence, is another progression where each term after the first increases or decreases by multiplication of a common number other than zero. This common number is called common ratio. For example, the sequence 1, 3, 9, 12, ... is a geometric progression with common ratio 3. Similarly, -2, -1, -0.5, -0.25 … is again in GP and has the common ratio 0.5 .

Given an initial term a, the common ratio r, the nth term of GP is given by
an = arn-1
The value of common ratio determines the behavior of GP. If the common ratio is:

Positive, terms will not change their sign.

Negative, the terms will have alternate positive and negative signs.

Greater than 1, the terms will exponentially grow towards positive or negative (depending on the sign of the initial term).

1, the progression is a constant sequence.

Between −1 and 1 but not zero, the progression will decay exponentially towards zero.

−1, the progression is an alternating sequence

Less than −1, for the absolute values progression grows exponentially towards positive and negative infinity (sign alters in between).

Harmonic Progression

Harmonic Progression (HP) is the progression formed when each of the terms found in AP is replaced by their reciprocals. In other words, when a,a + d,a + 2d,… a + (n-1)d is in AP, 1/a, 1/(a+d), … a/(a+(n-1)d) is in HP 19[]
.

The sum of the terms in HP leads to Harmonic Series. The series diverges.
AP, GP and HP are used for the variation of the Inertia Factor (w), in the basic PSO algorithm for this work. These progressions are used in order to study the variation pattern of the algorithm. The resulting impact from these variations will then be compared and analyzed later.
CHAPTER 4

4. Implementation

The implementation and testing of the benchmark test suite PSO algorithm is quite simple but powerful as compared to other computer science optimization algorithms. We implemented the PSO algorithm in PHP Programming Language. The implementation is compatible in all operating systems having an apache server.

PSO Algorithm revisited

The variables and mathematical symbols used in the algorithm have the same meanings as mentioned throughout the work unless specified explicitly.

Algorithm 2

Step 1: Randomly generate an initial swarms

Step 2: repeat

Step 3:

for each particle i do

Step 4:

if f(xi) > f (pi) then pi ← xi

Step 5:

pg = max (pneighbours)

Step 6:

vi+1 = w×vi+c1r1(pi-xi)+c2r2(pg-xi)

Step 7:

xi ← xi + vi

Step 8:

end for

Step 9:
until termination criterion is met
 The parameter, Inertia weight, has been tested and studied for different values. The testing method that has been used extensively is the one that consists of making this value decrease over the course of time with the increase in time with each iteration. Trial and Errors in its variations have helped fine tune this value. The change of different values for this attribute affects the algorithm in local and global searching space. In this context, this work intends to study the varying inertia factor on particle swarm optimization algorithm in a comparative study through different mathematical progression as geometric, arithmetic and harmonic progression.
Random Number Generation

Stochastic or random algorithms unlike other algorithms rely heavily on random number generators. In reality, most random numbers used in computer programs are pseudo-random, which means they are generated in a predictable fashion using a mathematical formula. This is fine for many purposes, but it may not be random in the way you expect if you're used to dice rolls and lottery drawings. Any way true random number generation is not possible in any computer machine today, workable generators can always be achieved in computers. PSO algorithm also relies on random numbers. Random numbers vary the social, cognitive and inertial aspects of motion of particles in the PSO algorithm. This variation is actually the key to the success of PSO in any problem. The randomness leads to exploration of the search space and exploitation of the solution site. In the algorithm, the variables r1 and r2 are random numbers between 0 and 1. These have significance in the algorithm. These help produce refined ness in the algorithm[7] .

Random number generator is a computational designed to generate a sequence numbers that cannot be reasonably predicted better then a random chance.

In various application have different methods for generating random number and data, including dice, coin flipping playing card etc in early age. There are many other technique because of mechanical nature of the technique, generating large no of sufficiently random numbers. Default random number generator in many language, including python, ruby, PHP is based on the Mersenne Twister algorithm.The implemented code however runs in any system that runs PHP.

Selection of Inertia weight

The parameter, Inertia weight, has been tested and studied for different values. The testing method that has been used extensively is the one that consists of making this value decrease over the course of time with the increase in time with each iteration. Trial and Errors in its variations have helped fine tune this value. The change of different values for this attribute affects the algorithm in local and global searching space.In this context, this work intends to study the varying inertia factor on particle swarm optimization algorithm in a comparative study through different mathematical progression as geometric, arithmetic and harmonic progression.

Object Oriented Programming

OOP is a programming paradigm based on the concept of ‘objects’ which may content data in the form of field. The main features of OOP are inheritance, polymorphism and encapsulation and these have been thoroughly exploited in the implementation of PSO. A class called “particle” is defined with a constructor that initializes the class instance (object) with given attributes.

class Particle:

position = []

fitness = 0.0

velocity = []

bestPosition = []

bestFitness = 0.0
def __init__(self, position, fitness, velocity,
bestPosition, bestFitness):

self.position = position

self.fitness = fitness

self.velocity = velocity

self.bestPosition = bestPosition

self.bestFitness = bestFitness
PHP classes, in appendix presented php code .
A swarm of particles is produced by making array of Particles objects. Many researches have varied the number of particles in a swarm and the number is not a fixed one to be settled at. Thus, 5 and 10 no of particles has been taken for this work on 3 dimensions and 6 dimensions. These objects are initialized with random values over the search space. The search space is defined by the objective functions which are Trid, Sum Square and Schwefel Functions.

Input and Output

In this work have been used PHP to implement PSO algorithm and random number generator algorithm. PHP is an open source server-side scripting language used in Web development to produce dynamic Web pages. It is one of the first developed server-side scripting languages to be embedded into an HTML source document rather than calling an external file to process data. The code is interpreted by a Web server with a PHP processor module which generates the resulting Web page. It has also evolved to include a command-line interface capability and can be used in standalone graphical applications.
 In the implementation, user chooses the number of iterations, the number of particles, objective function, the progression method of inertia weight, the input to the algorithm are the random numbers which are generated by the algorithm implicitly. Successive inputs are generated implicitly.

The outputs of the algorithm are numbers that are written in a .csv file. No of data record Inertia weight, Fitness Value , co-ordinate points are produce on given search space , which is used for analysis and testing purpose.
Data Structures

The data structures used in the implementation are predefined functions ,parameter variables, constants and arrays and random no generator in PHP . Inbuilt methods for the manipulation of these data structures are heavily exploited.

CHAPTER 5

5. Output
Output were the results obtained using the machine with following specification.

Machine: MacBook Air

Processor: 1.4 GHz ,Intel Core i5

Memory: 4GB,1600 MHz DDR3

Operating System:OS X, version 10.9.5

Web Server: XAMPP for OS X 5.6.15

Language: PHP Version 5.6.15
IN TRID FUNCTION

5 Particles with Trid function on 3D
	

	Dim
	Prog
	No of Iterations

	
	
	10
	
	
	
	
	
	100

	
	
	Inertia weight
	Fitness value
	Co-ordinate Point
	Inertia weight
	Fitness value
	Co-ordinate Point

	3
	Ari
	0.54
	-6.91
	3.02
	3.67
	2.90
	
	
	
	0.4
	-6.96
	3.09
	4.14
	2.90

	
	Har
	0.22
	-6.85
	3.07
	3.75
	2.59
	
	
	
	0.2
	-6.84
	3.07
	3.75
	2.59

	
	Geo
	0.01
	-6.65
	2.28
	3.53
	2.81
	
	
	
	0.0
	-6.74
	2.89
	4.30
	2.77

Table 5.1: Results obtained using 5 Particles in 10 and 100 iteration on 3D
1000 and 2000 iteration on 3D.

	Dim
	Prog
	1000
	2000

	
	
	Inertia weight
	Fitness value
	Co-ordinate Point
	Inertia weight
	Fitness value
	Co-ordinate Point

	3
	Ari
	0.52
	-7.00
	3.01
	4.01
	3.00
	0.64
	-7.00
	3.03
	4.00
	2.99

	
	Har
	0.67
	-6.98
	3.14
	4.08
	2.99
	0.67
	-6.99
	2.93
	3.97
	2.92

	
	Geo
	0.39
	-6.91
	3.28
	4.40
	3.20
	0.66
	-7.00
	3.04
	4.02
	2.98

Table 5.2: Results obtained using 5 Particles in 1000 and 2000 iteration on 3D
10 and 100 iteration on 6D.
	6D
	Ari
	0.25
	73.28
	-4.15
	5.87
	3.67
	5.24
	0.70
	-2.99
	0.62
	33.29
	10.90
	17.51
	18.43
	17.70
	15.72
	16.53

	
	Har
	0.12
	60.88
	3.61
	-0.42
	12.57
	11.69
	8.26
	1.50
	0.13
	96.37
	2.64
	-2.70
	1.42
	11.31
	2.58
	-0.80

	
	Geo
	0.31
	18.66
	1.17
	6.88
	0.20
	3.24
	3.61
	3.31
	0.23
	133.07
	8.78
	18.52
	28.83
	35.36
	25.64
	9.83

Table 5.3: Results obtained using 5 Particles in 10 and 100 iteration on 6D
100Iteration and 2000iteration.

	6.0
	Arithmetic
	0.4
	-17.2
	3.2
	11.6
	9.5
	6.5
	5.1
	3.5
	3.2
	0.3
	-3.8
	9.7
	13.5
	10.4
	10.0
	11.3

	
	Harmonic
	0.1
	100.0
	1.6
	13.5
	9.2
	12.8
	17.7
	3.2
	1.6
	0.7
	9.4
	3.3
	1.1
	4.1
	9.1
	12.2

	
	Geometric
	0.0
	110.8
	3.4
	9.8
	10.1
	3.0
	13.9
	14.4
	3.4
	0.3
	42.7
	1.6
	11.0
	18.4
	12.4
	15.2

Table 5.4: Results obtained using 5 Particles in 1000 and 2000 iteration on 6D
10 particles in Trid function

10 and 100 iterations

	Dim
	Prog
	No of Iterations

	
	
	10
	
	
	100

	
	
	Inertia weight
	Fitness value
	Co-ordinate Point
	Inertia weight
	Fitness value
	Co-ordinate Point

	3
	Ari
	0.37
	-6.87
	2.58
	3.72
	2.73
	0.37
	-6.99
	2.93
	3.88
	2.94

	
	Har
	0.37
	-6.90
	2.84
	4.14
	2.88
	0.19
	-6.69
	2.50
	4.02
	3.25

	
	Geo
	0.00
	-6.66
	2.90
	3.87
	3.51
	0.53
	-6.86
	2.70
	3.47
	2.76

Table 5.5: Results obtained using 10 Particles in 10 and 100 iteration on 3D
1000 and 2000 Iteration

	Dim
	Prog
	1000
	2000

	
	
	Inertia weight
	Fitness value
	Co-ordinate points
	Inertia weight
	Fitness value
	Co-ordinate Point

	3
	Ari
	0.72
	-6.99
	2.99
	3.89
	2.96
	0.32
	-7.00
	2.99
	3.99
	3.01

	
	Har
	0.40
	-6.98
	3.09
	4.17
	3.06
	0.50
	-7.00
	3.01
	3.96
	2.97

	
	Geo
	0.00
	-7.00
	3.06
	4.05
	3.00
	0.25
	-7.00
	3.02
	4.00
	3.00

Table 5.6: Results obtained using 10 Particles in 1000 and 2000 iteration on 3D
In TRID Function on 6D on 10 Particles .

	Dim
	Prog
	No of Iterations

	
	
	10
	100

	
	
	Inertia weight
	Fitness value
	Co-ordinate Point
	Inertia weight
	Fitness value
	Co-ordinate Point
	
	
	
	

	6
	Ari
	0.12
	97.48
	-4.59
	-0.33
	-3.78
	4.60
	11.38
	8.27
	0.27
	20.28
	8.48
	4.63
	13.30
	9.83
	5.55
	4.51

	
	Har
	0.21
	53.23
	5.34
	-0.33
	11.51
	12.05
	11.80
	4.59
	0.25
	-8.41
	-0.74
	6.69
	10.28
	12.26
	11.57
	9.67

	
	Geo
	0.01
	58.10
	-3.32
	6.99
	4.21
	1.81
	-0.76
	-0.55
	0.00
	66.40
	14.74
	25.57
	25.77
	22.45
	11.63
	9.68

Table 5. 7: Results obtained using 10 Particles in 10 and 100 iteration on 6D
10 Particles trid function on 6D
	Dim
	Prog
	No of Iterations

	
	
	1000
	2000

	
	
	Inertia weight
	Fitness value
	Co-ordinate Point
	Inertia weight
	Fitness value
	Co-ordinate Point
	
	
	
	

	6
	Ari
	0.33
	-4.06
	12.30
	15.06
	21.47
	21.14
	17.04
	10.51
	0.48
	51.23
	9.91
	19.46
	16.68
	9.88
	14.62
	12.25

	
	Har
	0.15
	-0.45
	-28.62
	9.38
	13.39
	1.81
	-0.76
	-0.25
	0.45
	-28.62
	9.38
	13.39
	16.84
	11.59
	10.72
	6.09

	
	Geo
	0.53
	-10.30
	2.60
	7.08
	9.88
	6.86
	12.08
	8.36
	0.00
	34.16
	5.61
	2.74
	13.06
	11.22
	14.65
	10.33

Table 5.8: Results obtained using 10 Particles in 1000 and 2000 iteration on 6D
Sum Square Function
5 particles in Sum Square function 3D
	Dimension
	Progression
	No of Iterations

	
	
	10
	100

	
	
	Inertia weight
	Fitness value
	Co-ordinate Point
	Inertia weight
	Fitness value
	Co-ordinate Point

	3
	Arithmetic
	0.48
	0.02
	-1.37
	0.13
	-0.02
	0.38
	0.00
	2.71
	-0.05
	0.00

	
	Harmonic
	0.12
	0.01
	5.12
	-0.02
	0.06
	0.35
	0.00
	5.12
	0.02
	-0.04

	
	Geometric
	0.00
	0.02
	-3.09
	0.14
	-0.01
	0.35
	0.00
	5.12
	0.02
	-0.04

Table 5.9: Results obtained using 5 Particles in 10 and 100 iteration on 3D
5 particles in Sum Square function 3D
	Dimension
	Progression
	No of Iterations
	
	
	
	
	
	
	
	
	

	
	
	100
	2000

	
	
	Inertia weight
	Fitness value
	o-ordinate Point
	Inertia weight
	Fitness value
	o-ordinate Point

	3
	Arithmetic
	0.46
	0.00
	5.10
	0.00
	0.00
	0.18
	0
	5.12
	0
	0

	
	Harmonic
	0.18
	0.00
	5.10
	0.00
	0.00
	0.4
	0
	5.12
	0
	0

	
	Geometric
	0.35
	0.00
	5.10
	0.00
	0.00
	0.23
	0
	5.12
	0
	0

Table 5.10: Results obtained using 5 Particles in 1000 and 2000 iteration on 3D
For Sum Square 5Particle on 6D
	Dim
	Prog
	No of Iterations

	
	
	10
	100

	
	
	 Inertia weight
	Fitness value
	Co-ordinate Point
	Inertia weight
	Fitness value
	Co-ordinate Point

	6
	Ari
	0.03
	7.52
	5.12
	3.58
	1.59
	-4.75
	5.12
	4.65
	0.45
	2.03
	5.12
	-0.50
	0.08
	-0.10
	0.09
	0.58

	
	Har
	0.15
	4.75
	-2.11
	-1.68
	-0.92
	-0.07
	0.15
	0.17
	0.29
	2.79
	5.12
	1.07
	-0.30
	0.08
	0.09
	0.53

	
	Geo
	0.00
	0.68
	-4.36
	-0.34
	-0.04
	0.11
	0.16
	0.29
	0.73
	7.13
	5.12
	1.40
	0.85
	-0.59
	-0.64
	0.46

Table 5.11: Results obtained using 5 Particles in 10 and 100 iteration on 6D
Sum Square 5 Particle on 6D
	Dim
	Prog
	No of Iterations

	
	
	1000
	2000

	
	
	Inertia weight
	Fitness value
	Co-ordinate Point
	Inertia weight
	Fitness value
	Co-ordinate Point

	6
	Ari
	0.63
	1.22
	1.35
	0.53
	0
	-0.08
	0.02
	-0.43
	0.62
	0.18
	5.12
	-0.21
	0.09
	0.09
	-0.06
	-0.13

	
	Har
	0.23
	3.71
	2.14
	0.86
	0.5
	0.61
	0.41
	-0.37
	0.63
	0.49
	4.22
	-0.43
	-0.31
	-0.07
	-0.15
	0.03

	
	Geo
	0.48
	1.69
	5.12
	0.34
	-0.21
	0.48
	-0.42
	-0.13
	0.81
	1.57
	0.32
	-0.17
	0.27
	0.2
	-0.27
	-0.45

Table 5.12: Results obtained using 5 Particles in 1000 and 2000 iteration on 6D
10 particles in Sum Square function on 3D
	Dim
	Prog
	No of Iteration

	
	
	10
	100

	
	
	Inertia weight
	Fitness value
	Co-ordinate Point
	Inertia weight
	Fitness value
	Co-ordinate Point

	3
	Ari
	0.47
	0.01
	5.12
	5.12
	5.12
	0.56
	0.00
	5.12
	0.00
	0.00

	
	Har
	0.08
	0.00
	1.96
	-0.04
	0.01
	0.38
	0.00
	-1.74
	0.01
	0.00

	
	Geo
	0.00
	0.02
	-3.87
	5.12
	1.77
	0.43
	0.00
	5.12
	0.02
	0.00

Table 5.13: Results obtained using 10 Particles in 10 and 100 iteration on 3D
Sum Square 10 Particle on 3D
	Dim
	Prog
	No of Iteration

	
	
	1000
	2000

	
	
	Inertia weight
	Fitness value
	Co-ordinate Point
	Inertia weight
	Fitness value
	Co-ordinate Point

	3
	Arithmetic
	0.39
	0.00
	5.12
	0.00
	0.00
	0.24
	0.00
	5.12
	0.00
	0.00

	
	Harmonic
	0.40
	0.00
	5.12
	0.00
	0.00
	0.29
	0.00
	5.12
	0.00
	0.00

	
	Geometric
	0.43
	0.00
	5.12
	0.00
	0.00
	0.35
	0.00
	5.12
	0.00
	0.00

Table 5.14: Results obtained using 10 Particles in 1000 and 2000 iteration on 3D
Sum Square Function 6D-10P

	Dimension
	ProgressionType
	No of Iterations

	
	
	10
	100

	
	
	Inertia weight
	Fitness value
	Co-ordinate Point
	Inertia weight
	Fitness value
	Co-ordinate Point

	6
	Arithmetic
	0.49
	7.46
	0.89
	4.14
	-2.64
	0.05
	0.66
	1.80
	0.71
	4.55
	1.62
	0.10
	0.21
	-0.17
	-0.40
	-0.86

	
	Harmonic
	0.19
	4.74
	3.81
	0.72
	-0.57
	0.08
	0.94
	0.04
	0.53
	1.82
	3.08
	0.31
	-0.46
	-0.32
	-0.44
	-0.21

	
	Geometric
	0.21
	6.03
	-1.14
	5.12
	3.44
	5.12
	2.88
	-2.62
	0.00
	3.09
	-0.22
	0.57
	-0.18
	-0.33
	0.67
	0.34

Table 5.15: Results obtained using 10 Particles in 10 and 100 iteration on 6D
10 Particle Sum square on 6D
	Dim
	Prog
	No of Iterations

	
	
	1000
	2000

	
	
	Inertia weight
	Fitness value
	Co-ordinate Point
	Inertia weight
	Fitness value
	Co-ordinate Point

	6
	Arithmetic
	0.54
	0.39
	5.12
	0.08
	-0.10
	-0.23
	0.16
	0.14
	0.13
	1.68
	5.12
	0.62
	-0.65
	0.09
	0.27
	0.16

	
	Harmonic
	0.19
	4.74
	3.81
	0.72
	-0.57
	0.08
	0.94
	0.04
	0.67
	0.78
	5.12
	0.27
	0.54
	-0.10
	-0.05
	0.12

	
	Geometric
	0.12
	2.12
	3.46
	0.25
	0.73
	0.37
	-0.03
	-0.34
	0.59
	0.11
	1.63
	-0.30
	-0.04
	-0.03
	0.03
	0.05

Table 5.16: Results obtained using 10 Particles in 1000 and 2000 iteration on 6D
Schwefel Function
5 particles in SCHWEFEL function on 3D.

	Dim
	Prog
	No of Iterations

	
	
	10
	100

	
	
	Inertia weight
	Fitness value
	Co-ordinate Point
	Inertia weight
	Fitness value
	Co-ordinate Point

	3
	Ari
	0.38
	422.34
	494.15
	426.12
	420.72
	0.41
	419.01
	451.70
	421.43
	421.05

	
	Har
	0.19
	435.15
	500.00
	414.88
	430.52
	0.30
	419.34
	500.00
	421.48
	419.36

	
	Geo
	0.00
	422.87
	-271.71
	424.49
	425.26
	0.73
	419.20
	500.00
	419.71
	421.30

Table 5.17: Results obtained using 5 Particles in 10 and 100 iteration on 3D
Schewfel 5 Particle on 3D
	Dim
	Prog
	No of Iterations

	
	
	1000
	2000

	
	
	Inertia weight
	Fitness value
	Co-ordinate Point
	Inertia weight
	Fitness value
	Co-ordinate Point

	3
	Ari
	0.28
	419.01
	485.91
	421.27
	421.33
	0.30
	418.98
	500.00
	420.97
	420.97

	
	Har
	0.18
	420.19
	397.65
	423.20
	418.82
	0.26
	418.98
	500.00
	420.97
	420.97

	
	Geo
	0.05
	421.35
	-77.27
	425.11
	419.72
	0.35
	418.98
	500.00
	420.97
	420.97

Table 5.18: Results obtained using 5 Particles in 1000 and 2000 iteration on 3D
5 Particles Schwefel In 6Dimensions.
	Dim
	Prog
	No of Iterations

	
	
	10
	100

	
	
	Inertia weight
	Fitness value
	Co-ordinate Point
	Inertia weight
	Fitness value
	Co-ordinate Point

	6
	Arithmetic
	0.20
	1366.36
	-196.53
	-311.97
	409.95
	-333.23
	-109.58
	218.95
	0.35
	810.26
	128.32
	437.60
	422.62
	455.65
	400.09
	384.04

	
	Harmonic
	0.11
	1237.07
	-279.09
	-123.45
	-302.83
	391.21
	413.34
	368.85
	0.09
	958.74
	430.19
	373.51
	-299.86
	426.08
	-298.11
	440.72

	
	Geometric
	0.04
	1396.42
	-408.33
	-368.53
	384.34
	399.99
	418.46
	210.36
	0.53
	829.16
	500.00
	393.03
	427.36
	411.93
	411.49
	368.90

Table 5.19: Results obtained using 5 Particles in 10 and 100 iteration on 6D
5Particle Schwefel on 6D
	Dim
	Prog
	No of Iterations

	
	
	1000
	2000

	
	
	Inertia weight
	Fitness value
	Co-ordinate Point
	Inertia weight
	Fitness value
	Co-ordinate Point

	6
	Arithmetic
	0.20
	1366.36
	-196.53
	-311.97
	409.95
	-333.23
	-109.58
	218.95
	0.35
	810.26
	128.32
	437.60
	422.62
	455.65
	400.09
	384.04

	
	Harmonic
	0.11
	1237.07
	-279.09
	-123.45
	-302.83
	391.21
	413.34
	368.85
	0.09
	958.74
	430.19
	373.51
	-299.86
	426.08
	-298.11
	440.72

	
	Geometric
	0.04
	1396.42
	-408.33
	-368.53
	384.34
	399.99
	418.46
	210.36
	0.53
	829.16
	500.00
	393.03
	427.36
	411.93
	411.49
	368.90

Table 5.20: Results obtained using 5 Particles in 1000 and 2000 iteration on 3D
10 particles in Schwefel function on 3D.

	Dimension
	Progression
	No of Iterations

	
	
	10
	100

	
	
	Inertia weight
	Fitness value
	Co-ordinate Point
	Inertia weight
	Fitness value
	Co-ordinate Point

	3
	Arithmetic
	0.43
	440.26
	156.39
	431.70
	428.29
	0.60
	419.00
	500.00
	420.64
	420.83

	
	Harmonic
	0.20
	420.28
	500.00
	422.54
	418.16
	0.16
	419.24
	-124.51
	419.71
	421.64

	
	Geometric
	0.00
	423.72
	500.00
	415.22
	418.80
	0.00
	419.88
	500.00
	418.34
	420.53

	
	
	
	
	
	
	
	
	
	
	
	

Table 5.21: Results obtained using 10 Particles in 10 and 100 iteration on 3D
10 Particle Schwefel Function on 3D
	Dimension
	Progression
	No of Iterations

	
	
	1000
	2000

	
	
	Inertia weight
	Fitness value
	Co-ordinate Point
	Inertia weight
	Fitness value
	Co-ordinate Point

	3
	Arithmetic
	0.24
	418.98
	500.00
	420.97
	420.97
	0.24
	418.98
	500.00
	420.97
	420.97

	
	Harmonic
	0.26
	418.98
	500.00
	420.97
	420.97
	0.25
	418.98
	500.00
	420.97
	420.97

	
	Geometric
	0.35
	418.98
	500.00
	420.97
	420.97
	0.23
	418.98
	500.00
	420.97
	420.97

Table 5.22: Results obtained using 10 Particles in 1000 and 2000 iteration on 3D
In 10 Particle Schwefel Function on 6D.

	Dim
	Prog
	No of Iterations

	
	
	10
	100

	
	
	Inertia weight
	Fitness value
	Co-ordinate Point
	Inertia weight
	Fitness value
	Co-ordinate Point

	6
	Arithmetic
	0.60
	1392.02
	-420.16
	500.00
	442.35
	-315.02
	442.85
	-300.47
	0.65
	793.95
	500.00
	389.80
	-309.32
	402.32
	393.64
	416.11

	
	Harmonic
	0.19
	1003.88
	75.97
	169.51
	446.25
	412.78
	447.09
	444.53
	0.24
	950.89
	500.00
	408.89
	443.70
	-328.35
	443.48
	460.62

	
	Geometric
	0.39
	1005.11
	297.78
	424.13
	427.16
	-115.37
	440.12
	194.99
	0.43
	1108.51
	403.74
	409.96
	176.11
	400.46
	474.04
	424.71

Table 5. 23: Results obtained using 10 Particles in 10 and 100 iteration on 6D
10 Particles on Schwefel on 6D
	Dimension
	ProgressionType
	No of Iterations

	
	
	1000
	2000

	
	
	Inertia weight
	Fitness value
	Co-ordinate Point
	Inertia weight
	Fitness value
	Co-ordinate Point

	6
	Arithmetic
	0.74
	586.73
	-216.92
	446.31
	435.46
	404.16
	406.57
	424.33
	0.49
	680.29
	500.00
	418.83
	456.74
	420.27
	392.67
	430.32

	
	Harmonic
	0.63
	642.49
	500.00
	418.98
	414.59
	405.39
	459.72
	412.41
	0.77
	730.19
	500.00
	437.55
	383.17
	448.26
	422.80
	433.57

	
	Geometric
	0.66
	640.93
	500.00
	422.77
	424.24
	-313.87
	402.80
	401.88
	0.17
	768.14
	500.00
	429.55
	365.87
	421.35
	430.47
	429.86

Table 5.24: Results obtained using 10 Particles in 1000 and 2000 iteration on 6D
CHAPTER 6
6. Results and Assumptions
The program was run four times on tenth, hundred thousand and two thousand iterations for 3dimensions and 6dimensions on 5 particles and 10 particles respectively , each equation varying the inertia factor by Arithmetic ,Harmonic and Geometric Progression. The processed result data is presented on tabular and graphical representation but the result did not happen as benchmark equation sets defined.
In case of Trid Function at 2000 Iterations and No of particles 10 in 6D the best expected fitness value was found out but rest of iterations, particles and dimensions could not give optimal solution on this work.
In case of Sum square function in 3D Arithmetic Progression In Inertia weight proved to be more effective for the first 100 Iterations. As the no of iterations grew more the results went out of expected range . This fluctuation was more distinct in geometric progression and Harmonic Progression, thus Arithmetic Progression seems better and increase in the no of iteration proved unimportant. Again in case of 6D on Sum Square, Arithmetic progression in weight W and Geometric Progression in weight W both, with the increase in no of iterations, proved promising .Arithmetic progression, however comparatively performed better then geometric Progression (GP) or Harmonic Progression (HP)

When the no of Particles were raised to 10, although Harmonic Progression Proved better in short no of iterations, AP and GP in Weight w proved as effective when the no of iteration were grew. this was seen in 3D, In 6D Geometric Progression in weight W performed better.

In case of Schwefel Fucntion, because this function is complex and has many local minima although the space around global minima was found out the fitness value for the global minima was never assessed around the expected value of 0.This was seen in both Dimensions, No of particles under study(5,10) and in the increase in no of iterations, Global minimums space was found better when progression in w was Arithmetic Progression.

When there was increase in no of particles was increase the results were also improved slightly.

[image: image20.png]Trid Function-5p-3d

2.00

—

-1.00

-2.00

-3.00

-4.00

-5.00

-6.00

-7.00

-8.00
Inertia in AP Fitness AP Inertiain HP Fitness HP Inertiain GP Fitnessin GP

wio 0.54 -6.91 0.22 -6.85 0.01 -6.65

m100 0.42 -6.96 0.22 -6.85 0.00 -6.74

m1000 0.52 -7.00 0.67 -6.98 0.39 -6.91

=2000 0.64 -7.00 0.67 -6.99 0.66 -7.00

[image: image21.png]2.00

1.00

0.00

-1.00

-2.00

-3.00

-4.00

-5.00

-6.00

-7.00

-8.00

Trid Function-10p-3d

Inertia in AP

Fitness AP

Inertiain HP

Fitness HP

Inertiain GP

Fitnessin GP

1o

0.37

-6.87

0.37

-6.90

0.00

-6.66

| 100

0.37

-6.99

0.19

-6.69

0.53

-6.86

m1000

0.72

-6.99

0.40

-6.98

0.00

-7.00

=2000

0.32

-7.00

0.50

-7.00

0.25

-7.00

[image: image22.png]160.00

140.00

120.00

100.00

80.00

60.00

40.00

20.00

0.00

-20.00

-40.00

Trid Function-5p-6d

Inertia in AP

Fitness AP

Inertiain HP

Fitness HP

Inertiain GP

Fitnessin GP

mlo

0.25

73.28

0.12

60.88

0.31

18.66

m100

0.62

33.29

0.13

96.37

0.23

133.07

m1000

0.43

-17.20

0.10

99.97

0.00

110.77

=2000

0.25

-3.75

0.71

9.39

0.25

42.75

[image: image23.png]Trid Function-10p-6d

2500
2000
1500
1000
500
0 .. == — _——
-500
Iteration No Inertia in AP Fitness AP Inertiain HP Fitness HP Inertiain GP Fitnessin GP
H Columnl 0 0.12 97.48 0.21 53.23 0.01 58.10
i Column2 100 0.27 20.28 0.25 -8.41 0.00 66.40
Hm Column3 1000 0.33 -4.06 0.15 -0.45 0.53 -10.30
H Column4 2000 0.48 51.23 0.45 -28.62 0.00 34.16

[image: image24.png]0.60

0.40

0.30

Sum Square 5p-3d

0.00 Il L I

Inertia in AP Fitness AP Inertiain HP Fitness HP Inertiain GP Fitnessin GP
1o 0.48 0.02 0.12 0.01 0.00 0.02
| 100 0.38 0.00 0.35 0.00 0.35 0.00
m1000 0.46 5.6E-09 0.18 4.7E-08 0.35 3.5E-07
=2000 0.18 0 0.4 0 0.23 0

[image: image25.png]0.60

0.50

0.40

Sum Square 10p-3d

0.00 . I

Inertia in AP Fitness AP Inertiain HP Fitness HP Inertiain GP Fitnessin GP
1o 0.47 0.01 0.08 0.00 0.00 0.02
m100 0.56 0.00 0.38 0.00 0.43 0.00
m1000 0.39 0.00 0.40 0.00 0.43 0.00
=2000 0.24 0.00 0.29 0.00 0.35 0.00

[image: image26.png]Sum Square 5p-6d

8.00

7.00

6.00

5.00

4.00

3.00

2.00

1.00

000 S . .

Inertia in AP Fitness AP Inertiain HP Fitness HP Inertiain GP Fitnessin GP

nlo 0.03 7.52 0.15 4.75 0.00 0.68
m100 7.52 7.52 0.29 2.79 0.73 7.13
m1000 0.63 1.22 0.23 3.71 0.48 1.69
=2000 0.62 0.18 0.63 0.49 0.81 157

[image: image27.png]Sum Square 10p-6d

8.00
7.00
6.00
5.00
4.00
3.00
2.00
1.00
0.00 JWWWW-— WWMWML T

Inertia in AP Fitness AP Inertiain HP Fitness HP Inertiain GP Fitnessin GP
nlo 0.49 7.46 0.19 4.74 0.21 6.03
m100 0.71 4.55 0.53 1.82 0.00 3.09
m1000 0.54 0.39 0.19 4.74 0.12 212
=2000 0.13 1.68 0.67 0.78 0.59 0.11

[image: image28.png]500.00

450.00

400.00

350.00

300.00

250.00

200.00

150.00

100.00

50.00

0.00

Schwefel 5p-3d

Inertia in AP

Fitness AP

Inertiain HP

Fitness HP

Inertiain GP

Fitnessin GP

1o

0.38

422.34

0.19

435.15

0.00

422.87

| 100

041

419.01

0.30

419.34

0.73

419.20

m1000

0.28

419.01

0.18

420.19

0.05

421.35

=2000

0.30

418.98

0.26

418.98

0.35

418.98

[image: image29.png]schwefel 10p-3d

500.00

450.00

400.00

350.00

300.00

250.00

200.00

150.00

100.00

50.00

0.00
Inertia in AP Fitness AP Inertiain HP Fitness HP Inertiain GP Fitnessin GP

1o 0.43 440.26 0.20 420.28 0.00 423.72

| 100 0.60 419.00 0.16 419.24 0.00 419.88

m1000 0.24 418.98 0.26 418.98 0.35 418.98

=2000 0.24 418.98 0.25 418.98 0.23 418.98

[image: image30.png]1600.00

1400.00

1200.00

1000.00

800.00

600.00

400.00

200.00

0.00

schwefel -5p-6d

Inertia in AP

Fitness AP

Inertiain HP

Fitness HP

Inertiain GP

Fitnessin GP

Lo

0.20

1366.36

0.11

1237.07

0.04

1396.42

m100

0.35

810.26

0.09

958.74

0.53

829.16

m1000

0.36

898.80

0.48

1077.05

0.00

904.27

=2000

0.63

431.50

0.67

728.16

0.73

1050.39

[image: image31.png]1600.00

1400.00

1200.00

1000.00

800.00

600.00

400.00

200.00

0.00

schwefel-10p-6d

Inertia in AP

Fitness AP

Inertiain HP

Fitness HP

Inertiain GP

Fitnessin GP

Lo

0.60

1392.02

0.19

1003.88

0.39

1005.11

m100

0.65

793.95

0.24

950.89

0.43

1108.51

m1000

0.74

586.73

0.63

642.49

0.66

640.93

=2000

0.49

680.29

0.77

730.19

0.17

768.14

Chapter 7

7. Conclusion and Future Work
Conclusion
This thesis discusses the Variation of the particle swarm optimization algorithm using bench mark function varying the inertia weight, which is a comparative study. This work helps to get fine tuned inertia weight value for these cases. This work provides small steps and larger comprehensive work. The final result of work suggest In the case Trid Function at 2000 times iterations on 10 particles gives expected fitness value on all three mathematical progression AP, HP and GP. In case of Sum square function in 3dimensions AP proved to be more effective for the first 100 Iterations. As the no of iterations grew more the results went out of expected range. This fluctuation was more distinct in GP and HP, thus Arithmetic Progression seems better and increase in the number of iteration proved unimportant. Again in case of 6D on Sum Square, Arithmetic progression in weight W and Geometric Progression in weight W both, with the increase in no of iterations, proved promising .Arithmetic progression, however comparatively performed better then GP) or HP. Again when the no of Particles were raised to 10, although HP proved better in short no of iterations, AP and GP in weight w proved as effective when the no of iteration were grew. This was seen in 3 and 6dimensions Geometric Progression in weight w performed better. Here, found that expected fitness value depends on number of iterations in some case and no of particle in some cases.

But in case of Schewfel Fucntion, because this function is complex and has many local minima although the space around global minima was found out the fitness value for the global minima was never assessed around the expected value of 0.This was seen in both Dimensions, No of particles under study (5,10) and in the increase in no of iterations, Global minimums space was found better when progression in w was AP. When there was increase in no of particles was increase the results were also improved slightly.
Future Work and Recommendation

PSO is quite popular and easy to implement algorithm with good value scope, because of the nature and potential of algorithm.PSO algorithm is not only for computer science also other field like mathematic, physics, biology and many more fields .For implementation only 5 and 10 no of particles will not sufficient particle for expected results as well as no of dimensions too. So this research work can be further improved with better estimation of particle, dimensions and different benchmark sets. This research can be extended further with more number of study in the real world implementation.

APPENDIX
function.php

<?php
require_once('num_functions.php');
define('ENUM_TRID', 1);
define('ENUM_SUM', 2);
define('ENUM_SCH', 3);
define('ENUM_PROG_ARITH', 1);
define('ENUM_PROG_GEOM', 3);
define('ENUM_PROG_HARM', 2);

class Particle{

public $position; //array

public $fitnessValue; //double

public $velocity; //array

public $bestPosition; //array

public $bestFitness; //double

function __construct($pos, $fit, $vel, $bPos, $bFit){

$this->position = $pos;

$this->velocity = $vel;

$this->fitnessValue = $fit;

$this->bestPosition = $bPos;

$this->bestFitness = $bFit;

}

}

function Parameter($fnType, $dimension, $mathProg){

$arrParam = array();

return array($dimension, $fnType, $mathProg);
}

functionTrid($x){

 $sum = 0; $sum1 = 0;
for($i=0;$i<count($x);$i++)
 $sum += pow($x[$i]-1,2);
for($i=1;$i<count($x);$i++)
 $sum1 += $x[$i] * $x[$i-1];
 //echo 'Trid: '.($sum-$sum1);
return($sum-$sum1);
}

functionSumSquare($x){

$len = count($x);

$sum = 0;

for($i=1;$i<$len; $i++)

{

$sum += $i * $x [$i] * $x [$i];

}
return $sum;
}

functionSch($x){

$d = count($x);

$sum=0;

$c = 418.9829 * $d;

for($i=1;$i<$d; $i++){

$sum += $x [$i] * sin(sqrt(abs($x [$i])));

}

//
return $sum + $c;
return $c - $sum;
}
functionprint_swarm($swarm){
//var_dump($swarm);
print "
Position: ". printPos($swarm->position);
print "
Fitness: ". $swarm->fitness;
print "
Velocity: ". printPos($swarm->velocity);
print "
BestPosition: ". printPos($swarm->bestPosition);
print "
BestFitness: ". $swarm->bestFitness;
print "
=========";
}

functiongeom_progression(){

 #Geometric progression with a=1, r=0.9 upto 100 numbers.
 $geom_prog = '';

 $li = 1;
 $count = 0;
while (($li > 0) && $count <100){
 $li *= 0.9;
 $geom_prog[] = $li;
 $count += 1;
 }
return $geom_prog;

}
functionarith_progression(){

#Arithmetic progression with a=0, d=0.01 upto 1.
//return array(0,1,0.01)
 returnarange(0,1,0.01);
 //return np.arange(0,0.1,0.01)

}
functionharmo_progression(){ #Harmonic Progression
 $start = 1.0;
 $difference = 1;
 $har_seq = '';
 $x = rangeX(0,100);
foreach($x as $i){

$har_seq[]= $start/$difference;
 $difference += 0.1;
 }
return $har_seq;
}
functionselected_progression($progression){

if ($progression == ENUM_PROG_ARITH)
returnarith_progression();
elseif ($progression == ENUM_PROG_GEOM)
returngeom_progression();
else
returnharmo_progression();
}
functionspace_of_search($fnChoice, $dim){

$arrRegSpace = '';

if($fnChoice == ENUM_TRID){

$min = -1 * pow($dim,2); $max = pow($dim,2);

}elseif($fnChoice == ENUM_SUM){

$min = -5.12;$max = 5.12;

}else{

$min = -500;$max = 500;

}

return array($min, $max);
}
class App
{

private $randV;

private $randP;

private $dim;

private $strFnType;

private $strMathFN;

function __construct($dim, $strFnType, $strMathFN)

{

$this->dim = $dim;$this->strFnType = $strFnType; $this->strMathFN=$strMathFN;

}

functionprint_info($minX, $maxX, $Dim, $numberParticles, $numberIterations){

return;

print "
Particle Swarm Optimization: Beginning demonstration!";
 print "
#########";
 printsprintf("
The dimension of the objective function to minimize is %s", $Dim);
printsprintf("
Objective function is % s" , $this->strMathFN);

print "
x is ranged over " . $minX . " <= x<= " . $maxX;

print "
Iteration cycle is " . $numberIterations;
 print "
Number of particles in the swarm is ". $numberParticles."
" ;
 print "
#########";

}

functionparticle_swarm($w){

$arrReturn = [];
$numPart = 10;
$numIteration = 1000;
$iteration = 0;
$dim = $this->dim;
$strFnType = $this->strFnType;
$progression = $this->strMathFN;
list($minX, $maxX) = space_of_search($strFnType, $dim);
$this->print_info($minX, $maxX, $dim, $numPart, $numIteration);
$arrReturn=array('value'=>$w, 'minX'=>$minX, 'maxX'=>$maxX, 'dim'=>$dim, 'particles'=>$numPart, 'iteration_no'=>$numIteration);

//var_dump($arrReturn);

$swarm = false;

$rangeX = rangeX(0, $numPart-1);
foreach($rangeX as $i){

$swarm[] = new Particle(0,0,0,0,0); //noteeeeee
//$swarm[$i] = new Particle(0,0,0,0,0);

}

for($i=0;$i<$dim;$i++)

$bestGPos[] = 0;//note

//$bestGPos[$i] = 0

$bestGPos = rangeVal($dim,0)

$bestLPos = rangeVal($dim,0);

//$bestGFit = 4000;
 $bestGFit = PHP_INT_MAX;
 $bestLFit = PHP_INT_MAX;

$minV = -1 * $maxX;

$maxV = $maxX;

//todo: swap

$tmpSw = '';

foreach ($swarm as $value) {

$randTmp = '';

$fitness = '';

$randTmpV = '';

for($j=0;$j<$dim;$j++){

$lo = $minX;$hi = $maxX;

$randTmp[] = (($hi - $lo) * (rand(0,89999999)/100000000)) + $lo;

}

if($strFnType == ENUM_TRID){

$fitness = Trid($randTmp);

}else if($strFnType == ENUM_SUM){

$fitness = SumSquare($randTmp);

}else{

$fitness = Sch($randTmp);

}

for($j=0;$j<$dim;$j++){;

$lo = -1.0 * abs($maxX-$minX);

$hi = abs($maxX - $minX);

$randTmpV[] = (($hi - $lo) * (rand(0,89999999)/100000000)) + $lo;

}

$value->position = $randTmp;

$value->fitnessValue = $fitness;

$value->velocity = $randTmpV;

$value->bestPosition = $randTmp;//$this->randP;

$value->bestFitness = $fitness;

if($value->fitnessValue< $bestGFit){

$bestGFit = $value->fitnessValue;

$bestGPos = $value->position;

}

$tmpSw[] = $value;

//var_dump($value);

};

$swarm = $tmpSw;

//var_dump($swarm);

$c1 = 1.49445;

$c2 = 1.49445;

$r1 = 0;

$r2 = 0;

$curP = null;//new Particle(0,0,0,0,0);

while($iteration<$numIteration){

$iteration++;

$newV = rangeVal($dim, 0);

$newP = rangeVal($dim, 0);

$newF = 0.0;

foreach($swarm as $i=>$curp){

foreach ($curp->velocity as $j => $value) {

set_time_limit(90);

$r1 = rand(0, 99999999)/100000000;

$r2 = rand(0, 99999999)/100000000;

$newV[$j] = ($w * $value +

$c1 * $r1 * ($curp->bestPosition[$j] - $curp->position[$j])

) - ($c2 * $r2 *

($bestGPos[$j] - $curp->position[$j])

);

$newV[$j] = ($newV[$j] < $minV)? $minV: ($newV[$j]> $maxV)? $maxV: $newV[$j];

}

$curp->velocity = $newV;

foreach ($curp->position as $j => $value) {

$newP[$j] = $curp->position[$j] + $curp->velocity[$j];

$newp[$j] = ($newP[$j] < $minX)? $minX: ($newP[$j]>$maxX)? $maxX: $newP[$j];

code...

}

 $curp->position = $newp;

if($strFnType == ENUM_TRID)

 $newFitness = Trid($curp->position) ;

else if($strFnType == ENUM_SUM)

 $newFitness = SumSquare($curp->position);

else

 $newFitness = Sch($curp->position);

 $curp->fitness = $newFitness;

if ($newFitness< $curp->bestFitness){

 $curp->bestPosition = $curp->position;

 $curp->bestFitness = $newFitness;

 }

if ($newFitness< $bestGFit){

 $bestGPos = $curp->position;

 $bestGFit = $newFitness;

 }

printRowVal($i, $iteration, $newFitness, $bestGFit, $curp->position, $bestGPos, $w);

$arrReturn['data'][] = array('fitness'=>$newFitness, 'bestFitness'=>$bestGFit, 'position'=>$curp->position, 'bestPosition'=>$bestGPos, 'sn'=>$i);

}

 //print_swarm($curp);

 // print "
###############";

 // print "
Procesing Completed";

 // print "
Procesing Completed";

 // print "
Final Best Fitness: ".$bestGFit ;

 // print "
Final Best Position: ".print_array($curp->bestPosition);

 // print "
###############";

}

return $arrReturn;

}

}

//echo Trid(array(0,1));

functionprintRow($sn, $pno, $fit, $bFit, $pos, $bPos, $wei)

{

echosprintf('

<label>%s</label>

<label>%s</label>

<label>%s</label>

<label>%s</label>

<label>%s</label>

<label class="bpos">%s</label>

<label class="bpos">%s</label>

', $sn, $pno, $wei, $fit, $bFit, $pos, $bPos

);

}

functionprintRowVal($sn, $pno, $fit, $bFit, $pos, $bPos, $wei)

{

echosprintf('

<label>%s</label>

<label>%s</label>

<label>%s</label>

<label>%s</label>

<label>%s</label>

<label class="bpos">%s</label>

<label class="bpos">%s</label>

', $sn, $pno, $wei, $fit, $bFit, printPos($pos), printPos($bPos)

);

}

Num_function.php
<?php

function swap1(&$x,&$y) {

 $x ^= $y ^= $x ^= $y;

}

function swap2(&$x,&$y) {

list($x,$y) = array($y,$x);

}

function swap3(&$x,&$y) {

 $tmp=$x;

 $x=$y;

 $y=$tmp;

}

functionarange($start, $stop, $step=1){

$arr='';

if($start>$stop){swap1($start, $stop);}

for($i=$start;$i<=$stop;$i += $step){

$arr[]=$i;

}

return $arr;

}

functionrangeX($s, $e){

$a='';if($s>$e){swap1($s,$e);}

for($i=$s;$i<=$e;$i++){$a[]=$i;}

return $a;

}

functiondoubleA($x, $v = 0){

$row = '';

for($i=0;$i<$x;$i++){

for($j=0;$j<$x;$j++){

$row[$i][$j] = $v;

}

}

return $row;

}

//subtract 2 dimension array

function op_array_2dimen($arr1, $arr2)

{

$x='';

foreach($arr1 as $k=>$v){

foreach($v as $k1=>$v1){

$x[$k][$k1]= $v1 - $arr2[$k][$k1];

}

}

return $x;

}

functionop_array($arr1, $arr2)

{

$x='';

$y = is_array($arr1)? $arr1: $arr2;

if(is_array($y)){

foreach($y as $k=>$v){

$x[$k]= (isset($arr1[$k])? $arr1[$k]: 0) - (isset($arr2[$k])? $arr2[$k]: 0);

}

}else{

$x[0] = $arr1 - $arr2;

}

return $x;

}

functionop_array_add($arr1, $arr2)

{

$x='';

$y = is_array($arr1)? $arr1: $arr2;

if(is_array($y)){

foreach($y as $k=>$v){

$x[$k]= (isset($arr1[$k])? $arr1[$k]: 0) + (isset($arr2[$k])? $arr2[$k]: 0);

}

}else{

$x[0] = $arr1 + $arr2;

}

//die();

return $x;

}

function op_array_add_2dim($arr1, $arr2)

{

$x='';

foreach($arr1 as $k=>$v){

foreach($v as $k1=>$v1){

$x[$k][$k1]= $v1 + $arr2[$k][$k1];

}

}

return $x;

}

functionop_array_mul_num($num, $arr){

$x='';

foreach($arr as $k=>$v){

$x[$k]= $v * $num;

}

return $x;

}

function op_array_mul_num_2dim($num, $arr){

$x='';

foreach($arr as $k=>$v){

foreach($v as $k1=>$v1){

$x[$k][$k1]= $v1 * $num;

}

}

return $x;

}

functionprint_array($arr){

returnsprintf('[%s, %s]',$arr[0], $arr[1]);

}

functionrangeVal($dim, $val){

$x = '';

for($i=0;$i<$dim;$i++){

$x[] = $val;

}

return $x;

}

functionprintPos($pos){

return '['.implode($pos, ',').']';

}

Index.php
<form action="process.php" method="post">

<center>

<h2>PSO Implementation.</h2>

<select name="fnType">

<option value='1'>Trid Function</option>

<option value='2'>Sum Square Function</option>

<option value='3'>Schwefel Function</option>

</select>

<select name="dimension">

<option value='Choosedimension'>Choose Dimension</option>

<option value='1'>1</option>

<option value='2'>2</option>

<option value='3'>3</option>

<option value='4'>4</option>

<option value='5'>5</option>

<option value='6'>6</option>

</select>

<select name="mathprogression">

<option value='mathprogression'>Choose MathemticalProgresssion</option>

<option value='1'>Arithmatic</option>

<option value='2'>Harmonic</option>

<option value='3'>Geometric</option>

</select>

<input type="submit" value="Send" name="cmdProcess">

</center>

</form>
Process.php
<style type="text/css">

body{width:5000px;}

label{display: inline-block;width: 150px;}

.bpos{min-width:750px;}

</style>

<?php

ini_set('memory_limit', '-1');

//Process.php

require "functions.php";

$strFnType = $_POST['fnType'];

$strDimen = $_POST['dimension'];

$strMathFN = $_POST['mathprogression'];

$progression = Parameter($strFnType, $strDimen, $strMathFN);

$wrange = selected_progression($strMathFN);

$objApp = new App($strDimen, $strFnType, $strMathFN);

$heading = sprintf('
Function: %s,
<t/>Algorith: %s,
Dimension: %s', $strFnType, $strMathFN, $strDimen);

echo $heading;

echoprintRow('SN','particle no', 'fitness', 'best fitness', 'position', 'best pos', 'weight');

$data = [];

foreach ($wrange as $key => $value) {

$data[]
 = $objApp->particle_swarm($value);

//if($key == 1){die();}

}

$numPart = 10;

$numIteration = 10;

$filenames = $numPart.'no_'.$numIteration.'Iteration_'.$strFnType.'_'.$strDimen.'_'.$strMathFN .'.csv';

//export particles

$fp = fopen($filenames, 'w');

fwrite($fp, $heading.PHP_EOL);

fwrite($fp, implode(',', array('sn', 'particle no', 'fitness', 'best fitness', 'position', 'best pos', 'weight')).PHP_EOL);

foreach ($data as $key => $value) {

//var_dump($value);

foreach ($value['data'] as $key1 => $value1) {

fwrite($fp, implode(',', array($key + 1, $value['particles'], $value1['fitness'], $value1['bestFitness'], printPos($value1['position']), printPos($value1['bestPosition']), $value['value'])).PHP_EOL);

}

}

fclose($fp);

?>

REFERENCE
[1]
M. Clerc, Particle swarm optimization. Great Britain, US: ISTE, 2006.

[2]
J. Kennedy and R. C. Eberhart, "Particle swarm optimization," in Proceedings of the 4th IEEE International Conference on Neural Networks, 1995, p. 6.

[3]
Y. Shi and R. Eberhart, "A modified particle swarm optimizer," in IEEE World Congress on Computational Intelligence, 2002, p. 4.

[4]
J. F. Kennedy, R. C. Eberhart, and Y. Shi, Swarm Intelligence. San Francisco: Morgan Kaufmann Publishers, 2001.

[5]
Molga and M. Smutnicki, "Test Functions for Optimization needs(2005)," ed, 2013.

[6]
R. C. Eberhart and Y. Shi, "Particle Swarm Optimization: Developments, Applications and Resources."

[7]
J. Kennedy and R. Eberhart, "A New Optimizer Using Particle Swarm Theory," presented at the International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995.

[8]
M. Clerc, "Comparing two stochastic algorithms on a benchmark set," ed, 2007.

[9]
S. Talukder, "Mathematical Modelling and Applications of Particle Swarm Optimization," 2011.

[10]
T. Blackwell, J. Branke, and X. Li, "Particle Swarms for Dynamic Optimization Problems," Swarm Intelligence Introduction and Applications,

Natural Computing Series, p. 26.

[11]
F. T. S. C. a. M. K. Tiwari, Swarm Intelligence

Focus on Ant and Particle Swarm Optimization 2011.

[12]
M. Clerc and J. Kennedy., "The particle swarm: explosion, stability and convergence

in a multi-dimensional space.," IEEE Transactions on Evolutionary Computation, vol. 158–73, 2000.

[13]
H.-G. Beyer, The Theory of Evolution strategies. Berlin: Springer, 2001.

[14]
J. C. Spall, "Introduction to Stochastic Search and Optimization," ed, 2003.

[15]
j. L. D. S. Camazine , N.R Franks ,J.Sneyd,G.Theraulaz and E. Bonabeau, "Self organization in Biological Systems," in Princeton and Oxford: princeton University Press, ed, 2001.

[16]
F. T. S. Chan and M. K. Tiwari, <Chambers - 2011 - Swarm intelligence.pdf>, 2011.

[17]
K. De Jong, "An analysis of the behaviour of a class of genetic adaptive systems.," Computer and Communication Sciences, University of Michigan, Ann. Arbor. Michigan, 1975.

[18]
J. C. Bansal, P. K. Singh, M. Saraswat, A. Verma, S. S. Jadon, and A. Abraham, "Inertia Weight Strategies in Particle Swarm Optimization," Third World Congress on Nature and Biologically Inspired Computing, 2011.

[19]
F. D. B. Van, "Particle Swarm Weight Initialization in Multi-layer Perceptron Artificial Neural Networks," in Development and Practice of Artificial Intelligence Techniques, Durban, South Africa, 1999, pp. 41-45.

Figure 6.1 : Trid Function implemented with 5particles on 3dimension

Figure 6.2: Trid Function implemented with 10 particles on 3dimension

Figure 6.3 : Trid Function implemented with 5 particles on 6 dimensions

Figure 6.4 : Trid Function implemented with 10 particles on 6 dimensions� Incase of Trid Function at 2000 Iterations and No of particles 10 in 6D the best expected fitness value was found out

Figure 6.5: Sum Square Function implemented with 5 particles on 3dimensions�In case of Sum square function in 3D Arithmetic Progression In Inertia weight proved to be more effective for the first 100 Iterations. As the no of iterations grew more the results went out of expected range . This fluctuation was more distinct in geometric progression and Harmonic Progression, thus Arithmetic Progression seems better and increase in the no of iteration proved unimportant.

Figure 6.6 : Sum Square Function implemented with 10 particles on 3dimensions

Figure 6.7: Sum Square Function implemented with 5 particles on 6 dimensions

Figure 6.8 : Sum Square Function implemented with 10 particles on 6 dimensions

Figure 6.9 : Schwefel Function implemented with 5 particles on 3dimensions

Figure 6.10 : Schwefel Function implemented with 10 particles on 3dimensions

Figure 6.11 : Schwefel Function implemented with 5 particles on 6 dimensions

Figure 6.12 : Schwefel Function implemented with 10 particles on 6 dimensions

72

_1551675776.unknown

_1551675777.unknown

